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Random matrix theory and classical statistical mechanics: Spin models
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We present a statistical analysis of spectra of transfer matrices of classical lattice spin models; this continues
the work on the eight-vertex model of the preceding pdpr Meyer, J.-C. Angle d’Auriac, and J.-M.
Maillard, Phys. Rev. B55, 5261(1997)]. We show that the statistical properties of these spectra can serve as
a criterion of integrability. It also provides an operational numerical method to locate integrable varieties. In
particular, we distinguish the notions of integrability and criticality, considering the two examples of the
three-dimensional Ising critical point and the two-dimensional three-state Potts critical point. For complex
spectra, which appear frequently in the context of transfer matrices, we show that the notion of independence
of eigenvalues for integrable models still hol{i81063-651X97)02806-7

PACS numbdrs): 05.50+q, 05.20-y, 05.45+b

[. INTRODUCTION trices, and finally to compute the free energy of the model
[5,6]. The spin version of the Yang-Baxter equations are the

Random matrix theoryRMT) has been applied in surpris- star-triangle equations introduced ear(iéj6]. Solving these
ingly many fields of physics and mathematics. In a recengtar-triangle equations also allows one to construct an infinite
paper[1] we proposed its application to transfer matrices offamily of commuting transfer matrices. We note that a vertex

lattice models in classical statistical mechanics. In a precedl0de! can be turned into a spin model with many-spin inter-

ing paper[2], referred to hereafter as paper I, we gave theactions(see, for example, Ref8]). In this paper, we treat

details of this RMT analysis applied to the general eight_spin models including only two-spin interactions, possibly

. . -.._coupled to an external field, and by integrable we mean
vertex model. We showed numerically that the 'ntegrab'“tyYan%—Baxter integrable as well as stayr-trianggle integrable.

of the model can be seen on the statistical properties of the The spectrum of an integrable system, after a suitable

entire spec?rur.n of tra'nsfer m:?\t'rices of vertex models. USi”Qreatment, has been shown to have many properties of a set
_thls as a criterion fo_r integrability, we located all t_he KNnown ot random independentnumbers (Poissonian behavipr
integrable varieties in the parameter space. In this paper Wghile the spectrum of a chaotic system is described quite
continue this work with the study of spin models. Many as-accurately by the spectrum of matrices of statistical en-
pects were already presented in paper I, so we will recalsembles. The choice of the proper ensemble depends on very
below only the basic ideas of the RMT analysis with emphageneral symmetry properties of the model under consider-
sis on the points which are specific to spin models. ation. For a time reversal symmetric model this ensemble is
An important area of application of RMT is the charac- the Gaussian orthogonal ensembBOE) [9,4]. This classi-

terization of chao$3,4]. One can describe the fluctuations of fication scheme has been applied successfully to quantum
energy spectra of chaotic systems with some ensembles spin models in one dimensiof10,11] and on two-
RMT, while the spectra of regular systems show the characdimensional lattice$12—-15.
teristics of independent numbefBoissonian ensembleln For a classical lattice spin model, the energy spectrum is
classicalHamiltoniar) mechanics, the notions of regular and usually very simple(For an Ising model this spectrum con-
chaotic dynamics coincide with the notions of integrability tains all the possible numbers of violated bonds, i.e., the set
and nonintegrability. But in quantum mechanics the notion®f integers[ONy], whereNy, is the number of bonds; the
of chaos and integrability are less precise; one nowadayRNhysical properties of the model are contained in the degen-
adopts the criterion of RMT as a definition of quantum €racies, and its statlstlcal' properties were studied in Ref.
chaos. For models of quantum statistical mechanics one canrl-) Therefore the analysis has to be performed on another
adopt a definition of integrability related to the Bethe ansatzquam'ty'.l-rhe. tranzf_e;] rgatrlxtljs such aln o?erf](t@iﬁted tod
an integrable system is a system for which a complete set ¢f€ Hamiltonian which describes completely the thermody-
eigenstates having the Bethe ansatz form exists. For a clag2mic properties of a system mcludmg the slze eff¢Lt,

. o : : . Clazhd we will perform the RMT analysis on its spectrum. It
sical statistical mechanics model, the notion of integrability,

. I lated he Y B ; E was already shown in paper | and [ii] that the notion of
Is generally related to the Yang-Baxter equations. For €Xy,nq Bayier integrability coincides with a Poissonian spec-

ample, solving the Yang-Baxter equations for the symmetriGrym  and that nonintegrable spectra are described by GOE
eight-vertex modefalso called the Baxter modedllows one  matrix spectra. To perform this RMT analysis in its usual
to build a one-parameter family of commuting transfer ma-form, one needs to deal with a real spectrum. For spin mod-
els, and when the interactions are nonchisginmetrig, this
can be achieved using the so-called row-to-i@wlayer-to-
*Present address: FB10 Theoretische Tieftemperaturphysikayer in higher dimensiontransfer matrix, as explained be-
Gerhard-Mercator-Universita 47048 Duisburg, Germany. Elec- low. We also studied the spectra in the nonphysical regime
tronic address: hmeyer@crtbt.polycnrs-gre.fr where the Boltzmann weights are not positive. Indeed, most
"Electronic address: dauriac@crtbt.polycnrs-gre.fr of the analytical results concern varieties in the entire param-
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eter space including the region where the Boltzmann weights (ii) To find the parameter-independent subspaces one
are negative. In this region, even row-to-row transfer matri-needs to know the symmetries of the generating sublattices.
ces can have complex eigenvalues. The necessary changed-or the transfer matrix of d-dimensional hypercubic lattice
the analysis will be discussed briefly. these generating sublattices atk<1)-dimensional lattices.

The plan of this paper is the following. In Sec. Il we recall For the square lattice, the generating sublattice is a periodic
the numerical methods of the RMT analysis with a speciachain. As explained in paper | the symmetry group is the
emphasis on the specificity of the spin models we investidihedral grougDy . For a three-dimensional cubic lattice we
gate. In Sec. lll we present the numerical results, succedise a square lattice as the generating sublattice. For an iso-
sively, of the two-dimensional Ising model in the absence oftropic square lattice the automorphy group has been detailed
magnetic field(a paradigm of an integrable systgnthe in [15] (with emphasis on the atypical cabk=4). It is a
same two-dimensional Ising model in a magnetic field, thdarge group which leads to consequent size reductfime
three-dimensional ising modéh paradigm of a noninte- Sec. IlIQ. In addition to these space symmetries there is a
grable system and the three-state Potts model. The three-‘color symmetry” when no field is applied. This symmetry
state Potts model provides an example of a point which iseflects the fact that the Hamiltonian is invariant under a
integrable and critical at the same time. By contrast, thepermutation of the possible values of the spin varialiles,
three-dimensional Ising model provides a nonintegrable, buspin reversal symmetry for the Ising mogefFor a g-state
critical, point. Finally, we investigate a nonphysical self-dualmodel, this is ar5, symmetry; in this paper we work with
point of the three-state Potts model. This is an attempt t@=2 and 3. This color symmetry commutes with the space
study complex spectra in the context of this statistical analysymmetries.
sis of transfer matrices. We conclude in Sec. IV with a dis- (iii) The diagonalization of the blocks is done numerically
cussion. using standard procedures of therAck library. We note
that the block diagonalization of stej) requires more nu-
merical effort(CPU time than the diagonalization of one
block.

(iv) The unfolding procedure is the same as the procedure

The machinery of random matrix theory was explained indetailed in paper I. It produces the unfolded eigenvaleies
details in paper |. It consists of five distinct stefi$:choose  from the raw eigenvalues. The spectra of spin and vertex
a representation basis for the operator and construct the camodels are quite similar. However, we also have analyzed
responding matrix(ii) find the parameter-independent stablecomplexspectra. In that case the eigenvalues are seen as
subspaces and the matrices representing the operator in egutints in the plangand not on a lingthe local density of
of these subspace€iji) diagonalize each matrixjv) “un- which has to be made constant. To unfold complex spectra
fold” each spectrum; andv) compute all the spectral quan- we follow the procedure described in Chap. 8.6 of Réf.
tities. In this section, we briefly discuss these five points, and (v) The spectral analysis is performed on the same quan-
give details which are specific to the spin models studied irtities as in paper |. These are the level spacing distribution
this paper. P(s) of the differences between two consecutive unfolded

(i) We use the transfer matrix formalism, where the latticeeigenvaluess, =€, ,—€;. For a nonintegrable model, the
is built up adding identical “generating sublattices.” These eigenvalue spacing distribution is very close to the Wigner
generating sublattices can be rows for two-dimensional modsurmise for the GOE,
els or rectangular layers for three-dimensional lattices. For

, A ) ) o
?a?cl:?o:?zoeddela?é it is well known that this transfer matrix can be P(S=N 4 —\)= 55 exp( — ws2l4) @)

Il. NUMERICAL METHODS OF RMT IN THE CONTEXT
OF SPIN MODELS

T(Ky K K.) in contrast with the exponenti®(s) =e ™S for a set of inde-
L2y ohn pendent eigenvalues for an integrable model. The spectral

=VYAK,, ... K)H(K)OVYAK,, ... Ky rigidity is
D)

1 a+L/2
A3(L)=<EminJ [Nu(e)—ae—b]zde> )
where H contains the interactions between two generating ab L @
sublattices and/ contains the interactions inside a ge”erat'whereNu(s)EEia(s—si) is the integrated density of un-

ing sublattice;V is usually a diagonal matrix<; are the fgded eigenvalues and), denotes an average over An-

_Nu

L
Ny 8+§

coupling constants in the different directions; we assign digiher quantity of interest is the number varia®¥L), de-
rection 1 to be the direction in which the lattice grows. Forfine as the variance of the number of unfolded eigenvalues
each case we study in this paper, the precise ford @hd i, a5 interval of lengthL,

H are given in the corresponding section. In fo(f), the

transfer matrix is a symmetric matrix if the interaction be- 5 L 2

tween the two layers and thus the matrxis symmetric. If 24b)= e 57 L ' )

the Boltzmann weights are real positive, the entries of the ©

transfer matrix are also real positive. In this case of a realhere the brackets denote an averaging evarhe expected
and symmetridtransfej matrix the spectrum is real, so that behavior in the limiting cases of independent numbers and
the methods for the statistical analysis presented in paperGOE spectra was recalled in paper I; for more details see, for
apply. example, Refs[9,4].
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We also recall the parametrized probability distribution In Ref.[19] it is shown that the problem of diagonalizing
we use to interpolate between the Poisson law and th&y(K.,K,) can be turned into a problem of free fermions.
Wigner law (Ref. [9], Chap. 16.8 One has

Pa(s)=c(1+p) sP exp—csf™h), (5)

N-1
with c=(C[(8+2)/(B+1)]D**~. The interpolation param- T\ (K;,K,)=(2 sinh2<1)’\"2ex;;{ -> eq<§;’§q— £)> ,
eter B8 proved itself to be a useful indicator for the localiza- q=0 2

tion of integrable varietief2]. There should be no confusion (12
of this parametep with the inverse temperaturekyT [17].

where £, are fermionic operators. The dispersion relation
€4(K1,K5) is a cosine, and its detailed form depends on the
A. Two-dimensional Ising model without magnetic field parity of the number of¢ particles. Therefore, fixing the
“quantum number”’q;, whereq; is the momentum of the

o e e b € parile,compltelyeermines an agenvale and an
’ o nteg . . eigenstate of the transfer matrix. However, instead of using
of a magnetic field18]. To work with symmetric matrices

. the complete set of quantum numbers, we take only into
we use the row-to-row transfer matrix. For a rectangular,

X . - . account the quantum numbers which correspond to
NXM Iattlc_e W.'th periodic boundary conditions the- parameter-independent symmetries. As mentioned in Sec. I,
duced Hamiltonian reads

the space symmetries dfy(K;,K5) form a group isomor-
N-1M-1 phic to the dihedral grouy=Z\X Z, (X is the semidirect
BHRI w(K1,Koy)=— > > 01 j(Kyoi 11+ Kaoi1q)) produc}, and in the absence of a magnetic field the spin
' i=0 j=0 " ' ' reversal symmetry induces an extfg symmetry which
6)  commutes withDy. Using the projectors independent of
. . K, andK, onto the corresponding invariant subspaces, the
where_:,B Is the nverse temperature, ang gr_1d K are the transfer matrix is block diagonalized. The dimensions of the
coupling constants in the two directions divided by the tem- . . . .
> S blocks are given in Table I. We note that using these projec-
perature. The partition function is L
tors leaves a few degeneracies inside some blocks. We also
note that some eigenvalues are independent of the value of
Zum(Ky,Ko) =2 exfd BHY u(K1,Ko)1=TrIN(K;,Ky) . K,. In Appendix A all these %2+ K,-independent eigen-
7) values occurring only when the sidéis a multiple of four,
are determined analytically.

lll. RESULTS OF THE RMT ANALYSIS

where the row-to-row transfer matrik (K, ,K5) is given by Having discarded the degenerate states and the
K,-independent states in each representation one can per-
(K1, K2)=V(K2)H(Ky) . (8)  form the RMT analysis. Figure 1 shows the level spacing

) ) N o ) distribution forw;=w,=1.4 of the representation labeled
The matrixV(K,) is a 2Yx 2N diagonal matrix with entries R=4,C=0 of N=16 (see Table )L One finds roughly an

N-1 exponential distribution which is expected for an integrable
[V(Ky)], .= H W%+ 9) model. Our explanation for the deviation from the exponen-
Zhaa Ly T2 ' tial is the following: for an integrable system we do not sort

the states according to all their “quantum numberglding
wherea;= =1, according to theth digit of the binary rep- that will leave us with blocks of size)1We therefore treat
resentation ofx andw,=e"2, The matrixH(K,) is a sym-  together eigenvalues belonging to states having different
metric matrix symmetries, but these states are only approximately indepen-
. dent. We also performed the same numerical analysiallon
oN W; Wy eigenvalues computed with formul@1) and the result is
H(K)=h(K)™%  hiKy)=| -1 » (10 even worse. This result is characteristic of the free-fermion
! ! nature of the probleninote that the parametg# has been
with w, = eX1. Note thatk; andK, do not play the same role found always negative on the free-fermion variety of the
here. If all the Boltzmann weights are real and positive, angight-vertex mode[2]). The same form of the spacing dis-
using the circular property of the trac&,(K,,K,) can be tribution is found for any value of the Boltzmann weights,

replaced by a similar matrix even for negat_ive Boltzmann weights. However, if one of the
Boltzmann weight is “too large” or “too small,” some en-
Tan(K 1, Ko) =VYAK)H(K ) VYAK,) . (1)  tries of the transfer matrix become huge, and this leads to

numerical instabilities in the diagonalization. On the other
It is clear thatTy\(K4,K,) is symmetric and therefore has a hand, if the Boltzmann weights are “too close” to unity
real spectrum. This spectrum has been completely worketecoupling limi} many eigenvalues are almost degenerate,
out for even sizeN in [19]. From the explicit form of the which leads to difficulties in the unfolding procedure. We
eigenvalues it is easy to check that the entire spectrum isote finally that the critical point does not manifest itself in
invariant by negating the Boltzmann weights, and we can any manner on the spacing distribution nor on the spectral
restrict ourselves to the physical casg>0. rigidity As.
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TABLE I. Two-dimensional Ising model: the symmetries of a Isotropic 2D Ising Model without Field
periodic chain combined with th&, color symmetry. The dimen- 1.2 T . r T . , .
sionsag and degeneracidg of the invariant subspaces for=14 T
and 16.R is an arbitrary label of the representations of the dihedral 1t
group, expik) and\ are the eigenvalues of the corresponding trans-
lation and reflection operatof$ means that the corresponding rep- 08 L

resentation is not stable under the action of the reflection opgrator

The columnag c—o (ag c-1) refers to states which are evémdd Z o6t

under spin reversal. The colunar is the sum of the two preceding o )

for the case where a magnetic field breaks the spin reversal sym- /

metry. 04 1

Ising model on a periodic square lattice 0.2
N=14, dim=16 384

R k A IR arc=0 arc=1 agr 0 0

0 0 1 1 362 325 687

1 T -1 1 288 325 613

2 0 -1 1 234 261 495 FIG. 1. The eigenvalue spacing distribution for the row-to-row
transfer matrix of the isotropic two-dimensional Ising model. The

2 2:/7 1 21 522‘? 5286; 15147% linear siz_e isN= 16, and_ the Boltzmann weight 'u_yl=w2:1.4. _
The spacings are taken in the largest representation. The average is

5 4ml7 ¥ 2 594 585 1179 over 1400 observations.

6 67/7 * 2 594 585 1179

7 77 * 2 576 585 1161 N-1

8 3wl7 * 2 576 585 1161 _

9 5«7 * 2 576 585 1161 [B(K) o= LT we, (15)

N=16, dim=65 536

R k A IR @rc=0  @rc-1 aR where a;=+1 according to theth bit of the binary repre-

0 0 1 1 1162 1088 2950  Sentation ofa, andw=eX. The spin reversal symmetry no

1 = -1 1 1033 1088 2121  longer holds.

2 0 -1 1 906 960 1866 It is known that this model is not Yang-Baxter integrable,

3 - 1 1 1033 960 1993  and its partition function has not yet been summed up. In

4 =2 * 2 2065 2048 4113  Fig. 2 we present the spacing distribution and the spectral

5 4 * 2 2062 2048 4110 rgidity for a typical large representatiofiabeledR=4 in

6 37/4 * 2 2062 2048 4110  Table ) for L=14. The temperature i5=1.4, and the mag-

7 /8 * 2 2032 2048 4080  hetic field isH=0.8. The statistics is taken over 1100 spac-

) 7m/8 * 2 2032 2048 4080 Ings. The spacing distribution clearly coincides with the

9 5m/8 * 2 2032 2048 4080  Wigner surmise. The agreement of the spectral rigidity

10 37/8 * 2 2032 2048 4080 and the number variancg? with same quantities computed

for the GOE matrices is surprisingly good: it holds up to a
value of L=25 for the spectral rigidity, and only up to
B. Two-dimensional Ising model in a magnetic field L=7 for the number variance, a value much larger than for
. . L . other models of statistical mechan{&. To appreciate how
We now investigate the case where a magnetic field IS e maanetic field infl th ing distribution. in Fi
turned on. The Hamiltonian becomes gnetic field infiueénces the spacing distribution, in Fg.
3 we plot the best fitted valug of the Brody distribution
N-1M-1 Ps, Eq.(5), as a function of the Boltzmann weight associ-
BHum(K1,Ko)=BHY w(Ky, K=K > X oy ated with the field. The behavior @ is unambiguous: the
1=01=0 13 magnetic field induces a Wigner-type distribution of the
spacing distribution. The drop @ is sharp as the magnetic
field goes to zero. In Fig. 3 the negative value of the param-
K being the field times the inverse temperature, and theter 8 in zero field is due to the free-fermion nature of the
transfer matrix reads two-dimensional Ising model in the absence of a magnetic
field. We interpret the small width of the peak as a size
effect, and we claim that in the thermodynamic lingitis
strictly zero only for a zero magnetic field. This underlines
the very singular nature of integrability. Probing the value of
B in the physical region of the parameter space, we did not
whereH andV are the same matrices as defined by E§8.  find any other integrable points than the points where the
and (9) andB(K) is a diagonal matrix with entries magnetic field is zero.

TN(Kl,KZ'K):[V(KZ)B(K)]l/ZH(Kl)[V(KZ)B(K)]UEJ-A)
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Isotropic 2D Ising Model with Field 'SOtI'OpiC 2D Ising Model with Field
; 1 : : . T : T
N
o8 Ifi—--{\} 0.8
z 1/ bN 1 0.6
0.4 { } E
N @ 04}
oz |/ Ny \ |
/ TR __ 0.2t
° o 0.5 1 1.5 2 25 3 3.5 4
° 0
0.6 T T v \
05 | -0‘2 I 1 L 1 1 1 1. 1
0.4 [ : 06 065 07 075 08 085 09 09 1
= w=exp(H/T)
< o3} - T¥P3aedE]
k3
oz b = j FIG. 3. The parameteB for the isotropic square lattice Ising
model as a function of the Boltzmann weight=expH/T) associ-
o1 r ] ated with the field. The other Boltzmann weights are kept constant
o , . . w;=W,= 1.6 which determines the temperatureTas2.1. Average
o s ° kg 20 28 %0 over the representatior®=0 and 4 for N=14 (approximately
2 , , 1700 spacings
1.8 7
1.6 N—-1
. Z [H(KDLap= IT wit? (17)
= 1. 1,]=
T 1 . )
0.8
o6 1 We again need to project the transfer matrix into the
Z: | parameter-independent invariant subspaces. Without mag-
. , . netic field we still have the spin reversal symmetry, but the

space group is more involved than for the two-dimensional

model, since the automorphy group of a square lattice is
FIG. 2. The eigenvalue spacing distributi®{s), the rigidity ~ larger than the automorphy group of a ritgee Sec. )

As, and the number varianc®? for the row-to-row transfer matrix ~ Using rectangulaN>xX N’ layers would have led to much

of the isotropic two-dimensional Ising model in a field. The linear simpler calculations, since the symmetry group would have

size isN=14, the temperature i§=1.4, and the magnetic field is been simplyDy® Dy.. However, the size reduction of the

H=0.8. The spacings are taken in the representation labelefhatrix would have been less and consequently also the nu-

6
L

R=4. The average is over 1100 observations. merically accesible lattice sizes. It is worth noting at this
point that the size effects are not controlled by the dimension
C. Three-dimensional Ising model of the subblocks of the transfer matrix, but by the size of the

W . tigat th hetvpal f int lattice. Moreover, we studied the particular cdse4 for
€ now investigate another archétypal case of noninteg ;. p, 1he generic symmetry group of the isotropic square

grability in statistical mechanics: the three-dimensional Is'nglattice C,, has to be replaced by a larger grodfpr the
. . H 4y

m a5 in two dimensions, but n iree cimenaions the fermiicchncal detais, sed15). In contrast wit the two-

' I . dimensional case, projecting onto invariant subspaces lifts
ons are corr(_elateﬁzo], and the partition function cannot be all degeneracies within each subblogiote that using the
Suvvmeeb%illjgtlr?e?a(t:tlicc):seeg fggSin Lare isotrovidavers. Let genericC,, group would have left degeneracies inside some

. tce by square | pIGayers. blocks. Table Il shows the size of the invariant subspaces.
K, be the interaction in the two directions inside the layers The results of the RMT analysis are presented in Fig. 4
andKl_the |nteract_|on n the_ dlre_ct|_on perp_end|_cular to theThe eigenvalue spacing distribution for the representations
Iayers(l.g., the cubic lattice |sl/b2unt in the d|rl<;32ct|on o). labeledR=17 and 18 in Table Il are averaged together. Af-
We again haveTy(K,,Ko) =VT(K ) H(K)VIHK,). The ter discarding some eigenvalues close to the edge of the

. . 2 . . . .
matrix V(K,) is a 2Y"x 2" diagonal matrix with entries spectrum, we are left with 2000 spacings. We observe that

N—1 N-1 the level spacing distribution is very close to a Wigner dis-
_ 1—[ 1—[ aji(eip1+aii1)) tribution. Also, the spectral rigidity and the number variance

V K — Waki ij+1 i+1) , 16 3 ) I . T
[V(K2)laa i—o j=o 2 (16 are in agreement with the corresponding quantities of GOE

matrices. We paid special attention to the critical point, since
it is an example of a nonintegrable, nevertheless critical,
wherea; ;= *1 (the sums in the indices are taken modulopoint. No special behavior is found. This strongly suggests
N). The matrixH(K;) is a symmetric matrix with entries  that the statistical properties of the eigenvalues of transfer
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TABLE II. Three-dimensional Ising model: the symmetry of an Anisotropic 3D Ising Model without Field
isotropic square lattice with periodic boundary conditions combined 1 T T T T T
with the Z, color symmetry. The notations are the same as in Table 0.8 F‘\/\/\\\/
l. 81 ]
. . . . 0.6 H ]
Ising model on a periodic cubic lattice
N=4, dim=65536 0.4
R IR arc=0 arc=1 ar =
0.2
0 1 222 180 402
1 1 50 44 94 0
2 1 169 180 349 02
3 1 33 44 77 e
4 2 191 192 383 0.4 : , . . .
5 2 211 192 403 1 1.2 14 1.6 1.8 2 2.2
6 3 186 180 366 exp(Ky)
7 3 291 300 591 ) _
3 3 183 180 363 FIG. 5. The best fitteg@ parameter as a function eft for the
9 3 354 300 654 anisotropic three-dimensional Ising model. The average runs over
10 4 460 480 940 rZnOOOdOQISpamngs. The poiett=1 corresponds to a two-dimensional
11 4 236 224 460 '
12 j ;22 ;’22 Zgg remarkable that with such a small siXe=4 we already have
14 6 397 416 813 a very abrupt variation o3. This once again stresses the
singular nature of integrability.
15 6 507 480 987
16 6 447 480 927 .
17 6 681 672 1353 D. Three-state potts model on a square lattice
18 8 668 672 1340 We now turn to the case of the Potts motkele Ref[21],
19 8 668 672 1340 and references therginThis spin model is a generalization

of the Ising model where the spins can take more than two
values. The Hamiltonian is
matrices are governed by the status of the model with respect

to integrability rather than to criticality. 0 P

To go from a two-dimensional model to a three- BHym(Ky,Ka) =~ 20 ZO [K18(ai .01 j+1)
dimensional model, we recorded the value ®fwhen the :
interactionw, in the third dimension is turned on continu- +Kyé(aij,0i115)] (18

ously. Figure 5 summarizes the results: a vanishingly small
coupling in the third direction induces level repulsion. It is whereé is a Kronecker symbo3 is the inverse temperature,
K; and K, are the coupling constants divided by the tem-
perature, andr € Z, can takeq values. This has been inves-
tigated by many authors, but its full solution is still a chal-
lenge. Using a duality relation, one can localize a phase
transition at the temperatuf®.= 1/In(1++/q) for any num-
. ber g of stateqg22]. The model can be mapped onto a stag-
08 ¢ H 1 gered six-vertex model, the parameters of which depend on
i Ky, Ky, andq [6]. This six-vertex model is in general not
o 06 % { . integrable, since there are two different sets of Boltzmann
o % weights, one for each sublattice of the square lattice. How-
04t + t ‘i\ . ever, for a special combination of the parameters the two sets
f { of Boltzmann weights are the same and, consequently, the
“i\ | partition function of the model can be calculated. This line,
TRE where the partition function can be calculated, turns out to be
| the critical line. Here, in contrast with the three-dimensional
' Ising model, the two notions of integrability and criticality
s ’ ' coincide.
We have numerically investigated the case of the three-
FIG. 4. The eigenvalue spacing distribution for the row-to-row State Potts model. Fay=3 this model presents a second-
transfer matrix of the isotropic three-dimensional Ising model at theorder phase transition which is not of the same universality
critical point. The linear size iNN=4. The spacings are averaged class as the transition of the Ising model. For the isotropic
over the representations labeled 17 and 18. The average is ovease the transition is given byeff—1)?=q=3. It would
2000 observations. have been interesting to study higher valueg dbr which

Isotropic 3D Ising model without Field

0.2 ff
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TABLE lll. Three-state Potts model: the symmetries of a peri- ; T . y ' T y
odic chain combined with th8; color symmetry. Same notations as
in Table I, butC has three possible valu€s=0, 1, or 2. There is an
extra twofold degeneracy faz=2.

Three-state Potts model on a periodic square lattice

N=11

dim=177 147

k

ar,.c=0

arc=1

arc=2

ar

OUNWNRPRO|D

0
T
/1l
27/11
37/11
47/11
57/11

1
1
2
2
2
2
2

1464
1221
2684
2684
2684
2684
2684

1342
1342
2684
2684
2684
2684
2684

2806
2563
5368
5368
5368
5368
5368

8418
7689
16104
16104
16104
16104
16104

the transition becomes first order, but the size of the transfer
matrix is an exponential function of the number of stajes
and values ofy larger than 3 lead to extremely large matrices
even for a small lattice size. The transfer maffixhas the
same forn{Eq. (11)] as for the two-dimensional Ising model

in absence of magnetic field. The matrX(K,) is a
3Nx 3N diagonal matrix with entries

N—-1

[V(Ky)] = i:HO wae s (19

wherea; = 0, 1 or 2 is the value of thih spins in the spin
configuration labeledr. The matrixH(K;) is a symmetric
matrix

w; 1 1 FIG. 6. Eigenvalue spacing distribution for the three-state Potts
_ ®N -1 w 1 model(a) precisely at the critical point; =w,= 1+ /3, and(b) far
H(K)=h(Ky)™,  hKy) ! from the critical point atw;=w,=1.4. The data are obtained for
1 1 w N=11 and the number of spacings are 2%80and 1400(b).

(20

The space symmetry group 13y as in the case of the Ising
model, but the color symmetry group$s rather thars, for

the Ising model. The size reduction is better in the Potts cast%
but far less than the exponential increase, due to the thre
states. Table Il gives the size of the blocks in the different
invariant subspaces. In Fig. 6 we present two typical leve

spacing distribution has properly “detected” the integrable
point w*, which corresponds precisely to the minimum in

he B(w) curve. We also observe size effects: for larger size
ge downward peak is sharper than for smaller size. This

. T . ; . Potts =3 Potts g=3
spacing distributions. The upper oi@ is obtained at the 0.6 — 0.6 —
critical value of the Boltzmann weight* =1+ /3, and the }{
other one is obtained at a different vale- 1.4 far from the 05 (a) 1171051 (b)
transition. It is obvious that awv* the distribution is very
close to an exponential, while fov#=w* this distribution is 0.4 4 1047
close to the Wigner surmise. Figure 7 shows the rigidity % 3
A5 for the same values of the Boltzmann weights. We ob- < 03| f 103} (111
serve the same coincidence with the theoretical behavior e it
pected for independent numbers and spectra of GOE matr 0.2 1027 ,§§§
ces. The agreement with the GOE behavior extends up to >
value L=4. This value is much less than for the two- 0.1 101+
dimensional Ising model in a field, but is comparable with
values obtained in some quantum moddM]. In Fig. 8 we 0 5 4 6 8 10 0 > 4 6 8 10
present the behavior of the best fitted vai®f the param- N N

etrized distribution as a function of temperature. Several
sizesN= 8, 9, 10, and 11 are plotted. We first note that the

FIG. 7. The rigidityA3(L) for the same parameters as in Fig. 6.
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Potts q=3 T T ' T T T r
1 T T T 1 ? N
o8l 1 @) ]
Eat
O 06 } J
- o /,'
04 | }"{ R ;{
02}/ T
,ﬁ
0 ) , I . 0 i 1 1
1.5 2 2.5 3 3.5 4 0 0.5 1
exp(J/T)
FIG. 8. The parameteB as a function of the temperature for a 1 T"-, % % 1
three-state Potts model for different lattice sizes. The minimum is a {
the critical point which is integrable. 08| } (b) 1
suggests that in the thermodynamic limit the spacing distri: {
/9= . - =z 061 7
bution is a Poisson lawnly at the critical temperature. £ /
We again found that integrability leads to independent / .
eigenvalues, whereas nonintegrability leads to eigenvalue re 04+t / % ‘ .
pulsion properly described by the spectral statistical proper i
ties of the GOE: the analysis of the statistical properties o L/ SR SN
. e 02+t/¢ SN 1
the spectrum of the transfer matrix can be used to find inte T
grable points. A
0 1 1 1

E. Three-state Potts model for negative Boltzmann weights

We now look at the isotropic three-state Potts model with
w<0. The transfer matrix is still symmetric, but some en-
tries become imaginary, since we have half-integer power
of negative numbergsee Eqs(19) and (11)]. We numeri-
cally found that the spectrum is complex only when
—2<w<0. Thus whenw<—2 one can apply the standard
RMT analysis. We have found a GOE spacing distribution asneans independence. The probability that random points in
expected. When-2<w<0 the spectrum contains mostly the plane are close to each other is already small, and a
complex conjugate eigenvalues. By spacing we now meafAupplementary repulsion due to correlations of nonintegrabil-
the shortest Euclidian distance between eigenvalues in thigy will have less influence than in the case of a real spec-
Comp|ex p|ane, and we use another unfo|ding proceduré’um. For nonsymmetric random matrices the joint probabil-
(Ref. [4], Chap. 8.6. We want to know if the unfolded ei- ity distribution of the eigenvalues was studig@3].
spacing distribution of independent pointsdmdimensions is ~ for the degree of repulsion is not known.
easy to evaluate: foN points taken randomly on a In Fig. 9b) we present a distribution of eigenvalue spac-

smersonal yperpher of radde, e pobaity 09SOV LS e epusion s ey scen srges)

tsha}tst?ﬁed;t)abn;&li?;ttwhzfne)?agﬁ;ntoﬁgdpﬁn??ssigar?g'g?t;ﬁre[%at _thls_ distribution is not close to the elgenvalue spacing

: distribution of the spectra of another universal ensemble
d|s_tance betweers and s+ds, and that the otheN-—2 GUE or GSE. We also have investigated another special
points are farther away thes point in the regime—2<w<0. The self-duality equation

FIG. 9. Two closest-distance distributions for the isotropic
ghree-state Potts model with negative Boltzmann weightfor the
Self-dual Boltzman weightv,=w,=wg,=1—+/3, and (b) for a
different valuew,=w,=—1.5. The average runs over about 2000
spacings.

g \d](N-2) (wgp—1)?=q has a solutiowgp=1— 3 which lies in this
Pn(s)dsxsdt 1—(—1,3) ds . (21)  regime. In Fig. %) we present the distribution of eigenval-
N ues spacings at this valwesp=1— /3. The agreement with

the Wigner law, which here means independence, is quite

. . . . d71
Taking the limitN—<, one obtainsP(s)=s?" *exp(~Cs) good. This is expected since the poimgp is also integrable.

(C is some constajpt For d=2 one recovers precisely the

Wigner law which is a well known distribution in math- V. DISCUSSION AND CONCLUSION

ematical statistics. In other words a Wigner law for a one-

dimensional set of points means repulsion between these We showed numerically that the eigenvalues of the trans-
points, whereas for points in the plane the same Wigner lavier matrix of an integrable spin model have many features of
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random independent numbers. Conversely, the spectrum of ACKNOWLEDGMENT

the transfer matrix of a nonintegrable spin model has many

features in common with the spectrum of a GOE matrix. In  We thank J.-M. Maillard for many discussions, where his
particular, the spacing distribution is an exponential law forexpertise with integrable models has been very precious.
integrable systems, while it is close to the Wigner surmise

for nonintegrable systems. Quantities involving more than APPENDIX A

two closest eigenvalues, like the rigidity, also show a GOE | \vas established ifL9] that the spectrum of the row-to-

behavior on quite a large scale involving up to 25 eigenvalyg,, anisotropic Ising model for an even sikeis given by
ues in the case of the square lattice Ising model with field.

The independence of eigenvalues for integrable models has ) N1

been checked on the Ising model in two dimensions in the ~ A+(K1,Kz)=[2 5'”“2K1)]N/26Xp( _%20 quq)’
absence of a magnetic field, as well as on the critical point of K (A1)
the three-state Potts model. We also have studied the transi-

tion point of a three-dimensional Ising model, for which we Where 7y=*1 according to thejth digit of the binary rep-
have found eigenvalue repulsion and a good agreement égsentation ofr (0=r<2"), and, for allq with 0=<q<N,

the spacing distribution with the Wigner surmise. This coshey= coshaK ,c0sha* — sinh2K ,sinh 2K cox

stresses the difference between criticality and integrability: (A2)
the eigenvalue statistics is sensible to integrability and not to
criticality. whereQ=(2g+1)#/N if there is an even number of 1 in

Using the eigenvalue statistics as a criterion of integrathe base two representation afandQ=2qw/N otherwise.
blity, we support the hypothesis that the two-dimensionalFor €4, the positive root of Eq(A2) has to be taken except
Ising model in a field and the three-dimensional Ising modefor Q=0, where e,=2(K7 —K,) and for Q=7 where
are not integrable. The integrable models appear as very simy»=2(K; +K,). K7 is the dual coupling constant defined
gular and isolated in parameter space. This is clearly seen igy tanh(lze‘ZKf. The derivative of\ .(K;,K,) with respect
curves showing the parametgras a function of a Boltz- to K, is
mann weight, wherg8 is close to unity almost everywhere, N_1
except for the particular values where the model is inte- IA (K1,K>) o 2 deq
grable. With the sizes numerically tractable, the variation of K, T2 AT(Kl'KZ)q:O Tq(;_KZ’ (A3)

B is abrupt, and the size behavior suggests that in the ther-
modynamic limit the statistics changes discontinuously. Taowith

clarify this point, a more detailed study of the size effects is Je

) sinhK,coshX 7 — coshX,sinh2X* coQ

needed. It would also be interesting, but difficult, to study the —9— i
Potts model with a large number of states to have a first K2 sinhe,
order phase transition point which is integrable. (A4)

To use the criterion of eigenvalue spacing statistics Withy js easy to check that, for aevennumber of particles
new modelgfor example, chiral modeloone needs to study

complex spectra in many cases. The distinction between in- Jeq Jen-1-q

dependent eigenvalues for integrable models and repelling €a= €n-1-q ~ and K, oK, (0=q<N72) ,
eigenvalues for nonintegrable models still holds. However, a (A5)
repulsion between eigenvalues in one dimension is much )

easier to quantify than in two dimensions. Intuitively this canWhile, for anodd number of particles,

be understood since in two dimensions the eigenvalues are Je.  de

not restricted to a line and have naturally more space to €q=€n—q and 279 _7°N-g (1<q<N/2)
avoid each other. The repulsion between eigenvalues in two Kz K,

dimensions has less effect than in one dimension. We have (AB)
found that for the three-state Potts model and for a Boltzypq

mann weight—2<w<0 the spectrum is complex, and that

the eigenvalue spacing distribution is characteristic of eigen- * de€g

value repulsion. However, whem is close to the negative €0=2(Ky —Ky), 5_|<2:2 ’ (A7)
self-dual value, we recover a distribution close to the Wigner

law indicating here an eigenvalue independence associated . JEN2

with integrability. The numerical difficulties arising from enz=2(K1 +Ky), 6_K2=_2 : (A8)

complex spectra are of importance, and we need to refine

further the analysis, and especially the unfolding, to study When the sizeN is a multiple of 4 and when there are

convicingly chiral models. This is in progress. N/2 particles, then the number of particles is even, and we
In these two papers we showed numerically that the stamust use formul@A5). There are Y2 choices ofr such that

tistical properties of transfer matrix spectra of classical sta7q=— Tn—1-q for 0=<q<<N/2. In that case one has

tistical mechanics models are related to the integrability of N—1 N/2—1
the_ model, extendin.g hereby the field of application of RMT. 2 Tqﬂ: z (74— TN—l—q)ﬁzo . (A9)
This can be useful in the search for new integrable models. g=o0 9K, 0 K,
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This gives 22 K ,-independent states. Collecting the three cases mentioned above, we obtain
N being still a multiple of 4 and takin§l/2+ 1 particles, 2V2*! K,-independent states. It is then simple to verify that

we now must use formulagA6) and (A7). There are the corresponding eigenvalues are

2x2N2=1 choices of 7 such that 7,=—7y_q for

1=q<N/2 andry= 1yp». In that case one has

Z

o an

2N (sinhK;)P(costK,)NP | (A11)
N/2—1

+enp)+ =0 ,
(€0t €niz) 2 (7q~Tn-1- q) wherep=N/2—1, andN/2 or N/2+ 1 is the number of par-
(A10) ticles.
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