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Random matrix theory and classical statistical mechanics: Spin models

H. Meyer* and J.-C. Angle`s d’Auriac†

Centre de Recherches sur les Tre`s Basses Tempe´ratures, Boıˆte Postale 166, 38042 Grenoble, France
~Received 17 December 1996!

We present a statistical analysis of spectra of transfer matrices of classical lattice spin models; this continues
the work on the eight-vertex model of the preceding paper@H. Meyer, J.-C. Angle`s d’Auriac, and J.-M.
Maillard, Phys. Rev. E55, 5261~1997!#. We show that the statistical properties of these spectra can serve as
a criterion of integrability. It also provides an operational numerical method to locate integrable varieties. In
particular, we distinguish the notions of integrability and criticality, considering the two examples of the
three-dimensional Ising critical point and the two-dimensional three-state Potts critical point. For complex
spectra, which appear frequently in the context of transfer matrices, we show that the notion of independence
of eigenvalues for integrable models still holds.@S1063-651X~97!02806-7#

PACS number~s!: 05.50.1q, 05.20.2y, 05.45.1b
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I. INTRODUCTION

Random matrix theory~RMT! has been applied in surpris
ingly many fields of physics and mathematics. In a rec
paper@1# we proposed its application to transfer matrices
lattice models in classical statistical mechanics. In a prec
ing paper@2#, referred to hereafter as paper I, we gave
details of this RMT analysis applied to the general eig
vertex model. We showed numerically that the integrabi
of the model can be seen on the statistical properties of
entire spectrum of transfer matrices of vertex models. Us
this as a criterion for integrability, we located all the know
integrable varieties in the parameter space. In this pape
continue this work with the study of spin models. Many a
pects were already presented in paper I, so we will re
below only the basic ideas of the RMT analysis with emp
sis on the points which are specific to spin models.

An important area of application of RMT is the chara
terization of chaos@3,4#. One can describe the fluctuations
energy spectra of chaotic systems with some ensemble
RMT, while the spectra of regular systems show the cha
teristics of independent numbers~Poissonian ensemble!. In
classical~Hamiltonian! mechanics, the notions of regular an
chaotic dynamics coincide with the notions of integrabil
and nonintegrability. But in quantum mechanics the notio
of chaos and integrability are less precise; one nowad
adopts the criterion of RMT as a definition of quantu
chaos. For models of quantum statistical mechanics one
adopt a definition of integrability related to the Bethe ansa
an integrable system is a system for which a complete se
eigenstates having the Bethe ansatz form exists. For a
sical statistical mechanics model, the notion of integrabi
is generally related to the Yang-Baxter equations. For
ample, solving the Yang-Baxter equations for the symme
eight-vertex model~also called the Baxter model! allows one
to build a one-parameter family of commuting transfer m

*Present address: FB10 Theoretische Tieftemperaturphy
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trices, and finally to compute the free energy of the mo
@5,6#. The spin version of the Yang-Baxter equations are
star-triangle equations introduced earlier@7,6#. Solving these
star-triangle equations also allows one to construct an infi
family of commuting transfer matrices. We note that a ver
model can be turned into a spin model with many-spin int
actions~see, for example, Ref.@8#!. In this paper, we trea
spin models including only two-spin interactions, possib
coupled to an external field, and by integrable we me
Yang-Baxter integrable as well as star-triangle integrable

The spectrum of an integrable system, after a suita
treatment, has been shown to have many properties of a
of random independentnumbers ~Poissonian behavior!,
while the spectrum of a chaotic system is described q
accurately by the spectrum of matrices of statistical
sembles. The choice of the proper ensemble depends on
general symmetry properties of the model under consid
ation. For a time reversal symmetric model this ensembl
the Gaussian orthogonal ensemble~GOE! @9,4#. This classi-
fication scheme has been applied successfully to quan
spin models in one dimension@10,11# and on two-
dimensional lattices@12–15#.

For a classical lattice spin model, the energy spectrum
usually very simple.~For an Ising model this spectrum con
tains all the possible numbers of violated bonds, i.e., the
of integers@0,Nb#, whereNb is the number of bonds; the
physical properties of the model are contained in the deg
eracies, and its statistical properties were studied in R
@13#.! Therefore the analysis has to be performed on ano
quantity. The transfer matrix is such an operator~related to
the Hamiltonian! which describes completely the thermod
namic properties of a system including the size effects@16#,
and we will perform the RMT analysis on its spectrum.
was already shown in paper I and in@1# that the notion of
Yang-Baxter integrability coincides with a Poissonian sp
trum, and that nonintegrable spectra are described by G
matrix spectra. To perform this RMT analysis in its usu
form, one needs to deal with a real spectrum. For spin m
els, and when the interactions are nonchiral~symmetric!, this
can be achieved using the so-called row-to-row~or layer-to-
layer in higher dimension! transfer matrix, as explained be
low. We also studied the spectra in the nonphysical reg
where the Boltzmann weights are not positive. Indeed, m
of the analytical results concern varieties in the entire para

ik,
6608 © 1997 The American Physical Society
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55 6609RANDOM MATRIX THEORY . . . : SPIN MODELS
eter space including the region where the Boltzmann weig
are negative. In this region, even row-to-row transfer ma
ces can have complex eigenvalues. The necessary chang
the analysis will be discussed briefly.

The plan of this paper is the following. In Sec. II we rec
the numerical methods of the RMT analysis with a spec
emphasis on the specificity of the spin models we inve
gate. In Sec. III we present the numerical results, succ
sively, of the two-dimensional Ising model in the absence
magnetic field~a paradigm of an integrable system!, the
same two-dimensional Ising model in a magnetic field,
three-dimensional ising model~a paradigm of a noninte
grable system!, and the three-state Potts model. The thr
state Potts model provides an example of a point which
integrable and critical at the same time. By contrast,
three-dimensional Ising model provides a nonintegrable,
critical, point. Finally, we investigate a nonphysical self-du
point of the three-state Potts model. This is an attemp
study complex spectra in the context of this statistical ana
sis of transfer matrices. We conclude in Sec. IV with a d
cussion.

II. NUMERICAL METHODS OF RMT IN THE CONTEXT
OF SPIN MODELS

The machinery of random matrix theory was explained
details in paper I. It consists of five distinct steps:~i! choose
a representation basis for the operator and construct the
responding matrix;~ii ! find the parameter-independent stab
subspaces and the matrices representing the operator in
of these subspaces;~iii ! diagonalize each matrix;~iv! ‘‘un-
fold’’ each spectrum; and~v! compute all the spectral quan
tities. In this section, we briefly discuss these five points, a
give details which are specific to the spin models studied
this paper.

~i! We use the transfer matrix formalism, where the latt
is built up adding identical ‘‘generating sublattices.’’ The
generating sublattices can be rows for two-dimensional m
els or rectangular layers for three-dimensional lattices.
spin models, it is well known that this transfer matrix can
factorized as

T~K1 ,K2 , . . . ,Kn!

5V1/2~K2 , . . . ,Kn!H~K1!V
1/2~K2 , . . . ,Kn! ,

~1!

whereH contains the interactions between two generat
sublattices andV contains the interactions inside a gener
ing sublattice;V is usually a diagonal matrix.Ki are the
coupling constants in the different directions; we assign
rection 1 to be the direction in which the lattice grows. F
each case we study in this paper, the precise form ofV and
H are given in the corresponding section. In form~1!, the
transfer matrix is a symmetric matrix if the interaction b
tween the two layers and thus the matrixH is symmetric. If
the Boltzmann weights are real positive, the entries of
transfer matrix are also real positive. In this case of a r
and symmetric~transfer! matrix the spectrum is real, so tha
the methods for the statistical analysis presented in pap
apply.
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~ii ! To find the parameter-independent subspaces
needs to know the symmetries of the generating sublatti
For the transfer matrix of ad-dimensional hypercubic lattice
these generating sublattices are (d21)-dimensional lattices.
For the square lattice, the generating sublattice is a perio
chain. As explained in paper I the symmetry group is t
dihedral groupDN . For a three-dimensional cubic lattice w
use a square lattice as the generating sublattice. For an
tropic square lattice the automorphy group has been deta
in @15# ~with emphasis on the atypical caseN54). It is a
large group which leads to consequent size reduction~see
Sec. IIIC!. In addition to these space symmetries there i
‘‘color symmetry’’ when no field is applied. This symmetr
reflects the fact that the Hamiltonian is invariant under
permutation of the possible values of the spin variables~i.e.,
spin reversal symmetry for the Ising model!. For aq-state
model, this is anSq symmetry; in this paper we work with
q52 and 3. This color symmetry commutes with the spa
symmetries.

~iii ! The diagonalization of the blocks is done numerica
using standard procedures of theLAPACK library. We note
that the block diagonalization of step~ii ! requires more nu-
merical effort ~CPU time! than the diagonalization of on
block.

~iv! The unfolding procedure is the same as the proced
detailed in paper I. It produces the unfolded eigenvaluee
from the raw eigenvaluesl. The spectra of spin and verte
models are quite similar. However, we also have analy
complexspectra. In that case the eigenvalues are see
points in the plane~and not on a line! the local density of
which has to be made constant. To unfold complex spe
we follow the procedure described in Chap. 8.6 of Ref.@4#.

~v! The spectral analysis is performed on the same qu
tities as in paper I. These are the level spacing distribut
P(s) of the differences between two consecutive unfold
eigenvaluessi5e i112e i . For a nonintegrable model, th
eigenvalue spacing distribution is very close to the Wign
surmise for the GOE,

P~s[l i112l i !5
p

2
s exp~2ps2/4! , ~2!

in contrast with the exponentialP(s)5e2s for a set of inde-
pendent eigenvalues for an integrable model. The spec
rigidity is

D3~L !5K 1Lmina,b
E

a2L/2

a1L/2

@Nu~e!2ae2b#2deL
a

, ~3!

whereNu(«)[( iu(«2« i) is the integrated density of un
folded eigenvalues and̂&a denotes an average overa. An-
other quantity of interest is the number varianceS2(L), de-
fined as the variance of the number of unfolded eigenval
in an interval of lengthL,

S2~L !5 K FNuS «1
L

2D2NuS «2
L

2D2LG2L
«

, ~4!

where the brackets denote an averaging over«. The expected
behavior in the limiting cases of independent numbers
GOE spectra was recalled in paper I; for more details see
example, Refs.@9,4#.
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6610 55H. MEYER AND J.-C. ANGLÈS D’AURIAC
We also recall the parametrized probability distributi
we use to interpolate between the Poisson law and
Wigner law ~Ref. @9#, Chap. 16.8!:

Pb~s!5c~11b! sb exp~2csb11!, ~5!

with c5„G@(b12)/(b11)#…11b. The interpolation param
eterb proved itself to be a useful indicator for the localiz
tion of integrable varieties@2#. There should be no confusio
of this parameterb with the inverse temperature 1/kBT @17#.

III. RESULTS OF THE RMT ANALYSIS

A. Two-dimensional Ising model without magnetic field

We start our analysis with the two-dimensional Isi
model, which is well known to be integrable in the absen
of a magnetic field@18#. To work with symmetric matrices
we use the row-to-row transfer matrix. For a rectangu
N3M lattice with periodic boundary conditions the~re-
duced! Hamiltonian reads

bHN,M
0 ~K1 ,K2!52 (

i50

N21

(
j50

M21

s i , j~K1s i , j111K2s i11,j ! ,

~6!

whereb is the inverse temperature, andK1 andK2 are the
coupling constants in the two directions divided by the te
perature. The partition function is

ZN,M~K1 ,K2!5( exp@bHN,M
0 ~K1 ,K2!#5TrTNM~K1 ,K2! ,

~7!

where the row-to-row transfer matrixTN(K1 ,K2) is given by

TN~K1 ,K2!5V~K2!H~K1! . ~8!

The matrixV(K2) is a 2N32N diagonal matrix with entries

@V~K2!#a,a5 )
i50

N21

w2
a ia i11 , ~9!

wherea i561, according to thei th digit of the binary rep-
resentation ofa andw25eK2. The matrixH(K1) is a sym-
metric matrix

H~K1!5h~K1!
^N, h~K1!5S w1 w1

21

w1
21 w1

D , ~10!

with w15eK1. Note thatK1 andK2 do not play the same role
here. If all the Boltzmann weights are real and positive, a
using the circular property of the trace,TN(K1 ,K2) can be
replaced by a similar matrix

TN~K1 ,K2!5V1/2~K2!H~K1!V
1/2~K2! . ~11!

It is clear thatTN(K1 ,K2) is symmetric and therefore has
real spectrum. This spectrum has been completely wor
out for even sizeN in @19#. From the explicit form of the
eigenvalues it is easy to check that the entire spectrum
invariant by negating the Boltzmann weightswi , and we can
restrict ourselves to the physical casewi.0.
e

e

r

-

d

d

is

In Ref. @19# it is shown that the problem of diagonalizin
TN(K1 ,K2) can be turned into a problem of free fermion
One has

TN~K1 ,K2!5~2 sinh2K1!
N/2expS 2 (

q50

N21

eqS jq
1jq2

1

2D D ,

~12!

where jq are fermionic operators. The dispersion relati
eq(K1 ,K2) is a cosine, and its detailed form depends on
parity of the number ofj particles. Therefore, fixing the
‘‘quantum number’’qi , whereqi is the momentum of the
i th j particle, completelydetermines an eigenvalue and a
eigenstate of the transfer matrix. However, instead of us
the complete set of quantum numbers, we take only i
account the quantum numbers which correspond
parameter-independent symmetries. As mentioned in Sec
the space symmetries ofTN(K1 ,K2) form a group isomor-
phic to the dihedral groupDN5ZN›Z2 ~› is the semidirect
product!, and in the absence of a magnetic field the s
reversal symmetry induces an extraZ2 symmetry which
commutes withDN . Using the projectors independent o
K1 andK2 onto the corresponding invariant subspaces,
transfer matrix is block diagonalized. The dimensions of
blocks are given in Table I. We note that using these proj
tors leaves a few degeneracies inside some blocks. We
note that some eigenvalues are independent of the valu
K2. In Appendix A all these 2N/211 K2-independent eigen
values occurring only when the sizeN is a multiple of four,
are determined analytically.

Having discarded the degenerate states and
K2-independent states in each representation one can
form the RMT analysis. Figure 1 shows the level spac
distribution for w15w251.4 of the representation labele
R54,C50 of N516 ~see Table I!. One finds roughly an
exponential distribution which is expected for an integra
model. Our explanation for the deviation from the expone
tial is the following: for an integrable system we do not so
the states according to all their ‘‘quantum numbers’’~doing
that will leave us with blocks of size 1!. We therefore treat
together eigenvalues belonging to states having differ
symmetries, but these states are only approximately inde
dent. We also performed the same numerical analysis onall
eigenvalues computed with formula~A1! and the result is
even worse. This result is characteristic of the free-ferm
nature of the problem~note that the parameterb has been
found always negative on the free-fermion variety of t
eight-vertex model@2#!. The same form of the spacing dis
tribution is found for any value of the Boltzmann weight
even for negative Boltzmann weights. However, if one of t
Boltzmann weight is ‘‘too large’’ or ‘‘too small,’’ some en-
tries of the transfer matrix become huge, and this leads
numerical instabilities in the diagonalization. On the oth
hand, if the Boltzmann weights are ‘‘too close’’ to unit
~decoupling limit! many eigenvalues are almost degenera
which leads to difficulties in the unfolding procedure. W
note finally that the critical point does not manifest itself
any manner on the spacing distribution nor on the spec
rigidity D3.
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55 6611RANDOM MATRIX THEORY . . . : SPIN MODELS
B. Two-dimensional Ising model in a magnetic field

We now investigate the case where a magnetic field
turned on. The Hamiltonian becomes

bHN,M~K1 ,K2!5bHN,M
0 ~K1 ,K2!2K (

i50

N21

(
j50

M21

s i , j ,

~13!

K being the field times the inverse temperature, and
transfer matrix reads

TN~K1 ,K2 ,K !5@V~K2!B~K !#1/2H~K1!@V~K2!B~K !#1/2 ,
~14!

whereH andV are the same matrices as defined by Eqs.~10!
and ~9! andB(K) is a diagonal matrix with entries

TABLE I. Two-dimensional Ising model: the symmetries of
periodic chain combined with theZ2 color symmetry. The dimen-
sionsaR and degeneraciesl R of the invariant subspaces forN514
and 16.R is an arbitrary label of the representations of the dihed
group, exp(ik) andl are the eigenvalues of the corresponding tra
lation and reflection operators~* means that the corresponding re
resentation is not stable under the action of the reflection opera!.
The columnaR,C50 (aR,C51) refers to states which are even~odd!
under spin reversal. The columnaR is the sum of the two precedin
for the case where a magnetic field breaks the spin reversal s
metry.

Ising model on a periodic square lattice
N514, dim516 384

R k l l R aR,C50 aR,C51 aR

0 0 1 1 362 325 687
1 p 21 1 288 325 613
2 0 21 1 234 261 495
3 p 1 1 288 261 549
4 2p/7 * 2 594 585 1179
5 4p/7 * 2 594 585 1179
6 6p/7 * 2 594 585 1179
7 p/7 * 2 576 585 1161
8 3p/7 * 2 576 585 1161
9 5p/7 * 2 576 585 1161

N516, dim565 536
R k l l R aR,C50 aR,C51 aR

0 0 1 1 1162 1088 2250
1 p 21 1 1033 1088 2121
2 0 21 1 906 960 1866
3 p 1 1 1033 960 1993
4 p/2 * 2 2065 2048 4113
5 p/4 * 2 2062 2048 4110
6 3p/4 * 2 2062 2048 4110
7 p/8 * 2 2032 2048 4080
8 7p/8 * 2 2032 2048 4080
9 5p/8 * 2 2032 2048 4080
10 3p/8 * 2 2032 2048 4080
is

e

@B~K !#a,a5 )
i50

N21

wa i, ~15!

wherea i561 according to thei th bit of the binary repre-
sentation ofa, andw5eK. The spin reversal symmetry n
longer holds.

It is known that this model is not Yang-Baxter integrab
and its partition function has not yet been summed up.
Fig. 2 we present the spacing distribution and the spec
rigidity for a typical large representation~labeledR54 in
Table I! for L514. The temperature isT51.4, and the mag-
netic field isH50.8. The statistics is taken over 1100 spa
ings. The spacing distribution clearly coincides with t
Wigner surmise. The agreement of the spectral rigidityD3

and the number varianceS2 with same quantities compute
for the GOE matrices is surprisingly good: it holds up to
value of L525 for the spectral rigidity, and only up to
L57 for the number variance, a value much larger than
other models of statistical mechanics@2#. To appreciate how
the magnetic field influences the spacing distribution, in F
3 we plot the best fitted valueb of the Brody distribution
Pb , Eq. ~5!, as a function of the Boltzmann weight assoc
ated with the field. The behavior ofb is unambiguous: the
magnetic field induces a Wigner-type distribution of t
spacing distribution. The drop ofb is sharp as the magneti
field goes to zero. In Fig. 3 the negative value of the para
eterb in zero field is due to the free-fermion nature of th
two-dimensional Ising model in the absence of a magn
field. We interpret the small width of the peak as a s
effect, and we claim that in the thermodynamic limitb is
strictly zero only for a zero magnetic field. This underlin
the very singular nature of integrability. Probing the value
b in the physical region of the parameter space, we did
find any other integrable points than the points where
magnetic field is zero.

l
-

r

m-

FIG. 1. The eigenvalue spacing distribution for the row-to-ro
transfer matrix of the isotropic two-dimensional Ising model. T
linear size isN516, and the Boltzmann weight isw15w251.4.
The spacings are taken in the largest representation. The avera
over 1400 observations.
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C. Three-dimensional Ising model

We now investigate another archetypal case of nonin
grability in statistical mechanics: the three-dimensional Is
model. This model can still be mapped onto a fermion pr
lem as in two dimensions, but in three dimensions the fer
ons are correlated@20#, and the partition function cannot b
summed up in a closed form.

We build the lattice by addingsquare isotropiclayers. Let
K2 be the interaction in the two directions inside the lay
andK1 the interaction in the direction perpendicular to t
layers~i.e., the cubic lattice is built in the direction ofK1).
We again haveTN(K1 ,K2)5V1/2(K2)H(K1)V

1/2(K2). The
matrix V(K2) is a 2N

2
32N

2
diagonal matrix with entries

@V~K2!#a,a5 )
i50

N21

)
j50

N21

w2
a i , j ~a i , j111a i11,j ! , ~16!

wherea i , j561 ~the sums in the indices are taken modu
N). The matrixH(K1) is a symmetric matrix with entries

FIG. 2. The eigenvalue spacing distributionP(s), the rigidity
D3, and the number varianceS

2 for the row-to-row transfer matrix
of the isotropic two-dimensional Ising model in a field. The line
size isN514, the temperature isT51.4, and the magnetic field i
H50.8. The spacings are taken in the representation lab
R54. The average is over 1100 observations.
-
g
-
i-

s

@H~K1!#a,b5 )
i , j50

N21

w1
a i , jb i , j . ~17!

We again need to project the transfer matrix into th
parameter-independent invariant subspaces. Without m
netic field we still have the spin reversal symmetry, but t
space group is more involved than for the two-dimension
model, since the automorphy group of a square lattice
larger than the automorphy group of a ring~see Sec. II!.
Using rectangularN3N8 layers would have led to much
simpler calculations, since the symmetry group would ha
been simplyDN^DN8. However, the size reduction of the
matrix would have been less and consequently also the
merically accesible lattice sizes. It is worth noting at th
point that the size effects are not controlled by the dimens
of the subblocks of the transfer matrix, but by the size of t
lattice. Moreover, we studied the particular caseN54 for
which the generic symmetry group of the isotropic squa
lattice C4v has to be replaced by a larger group~for the
technical details, see@15#!. In contrast with the two-
dimensional case, projecting onto invariant subspaces
all degeneracies within each subblock~note that using the
genericC4v group would have left degeneracies inside som
blocks!. Table II shows the size of the invariant subspace

The results of the RMT analysis are presented in Fig.
The eigenvalue spacing distribution for the representatio
labeledR517 and 18 in Table II are averaged together. A
ter discarding some eigenvalues close to the edge of
spectrum, we are left with 2000 spacings. We observe t
the level spacing distribution is very close to a Wigner di
tribution. Also, the spectral rigidity and the number varian
are in agreement with the corresponding quantities of GO
matrices. We paid special attention to the critical point, sin
it is an example of a nonintegrable, nevertheless critic
point. No special behavior is found. This strongly sugge
that the statistical properties of the eigenvalues of trans

ed

FIG. 3. The parameterb for the isotropic square lattice Ising
model as a function of the Boltzmann weightw5exp(H/T) associ-
ated with the field. The other Boltzmann weights are kept const
w15w251.6 which determines the temperature asT'2.1. Average
over the representationsR50 and 4 forN514 ~approximately
1700 spacings!.
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55 6613RANDOM MATRIX THEORY . . . : SPIN MODELS
matrices are governed by the status of the model with res
to integrability rather than to criticality.

To go from a two-dimensional model to a thre
dimensional model, we recorded the value ofb when the
interactionw1 in the third dimension is turned on continu
ously. Figure 5 summarizes the results: a vanishingly sm
coupling in the third direction induces level repulsion. It

TABLE II. Three-dimensional Ising model: the symmetry of a
isotropic square lattice with periodic boundary conditions combin
with theZ2 color symmetry. The notations are the same as in Ta
I.

Ising model on a periodic cubic lattice
N54, dim565 536

R lR aR,C50 aR,C51 aR

0 1 222 180 402
1 1 50 44 94
2 1 169 180 349
3 1 33 44 77
4 2 191 192 383
5 2 211 192 403
6 3 186 180 366
7 3 291 300 591
8 3 183 180 363
9 3 354 300 654
10 4 460 480 940
11 4 236 224 460
12 4 460 480 940
13 4 236 224 460
14 6 397 416 813
15 6 507 480 987
16 6 447 480 927
17 6 681 672 1353
18 8 668 672 1340
19 8 668 672 1340

FIG. 4. The eigenvalue spacing distribution for the row-to-ro
transfer matrix of the isotropic three-dimensional Ising model at
critical point. The linear size isN54. The spacings are average
over the representations labeled 17 and 18. The average is
2000 observations.
ct

ll

remarkable that with such a small sizeN54 we already have
a very abrupt variation ofb. This once again stresses th
singular nature of integrability.

D. Three-state potts model on a square lattice

We now turn to the case of the Potts model~see Ref.@21#,
and references therein!. This spin model is a generalizatio
of the Ising model where the spins can take more than
values. The Hamiltonian is

bHN,M
0 ~K1 ,K2!52 (

i50

N21

(
j50

M21

@K1d~s i , j ,s i , j11!

1K2d~s i , j ,s i11,j !# , ~18!

whered is a Kronecker symbol,b is the inverse temperature
K1 andK2 are the coupling constants divided by the te
perature, andsPZq can takeq values. This has been inves
tigated by many authors, but its full solution is still a cha
lenge. Using a duality relation, one can localize a ph
transition at the temperatureTc51/ln(11Aq) for any num-
ber q of states@22#. The model can be mapped onto a sta
gered six-vertex model, the parameters of which depend
K1, K2, andq @6#. This six-vertex model is in general no
integrable, since there are two different sets of Boltzma
weights, one for each sublattice of the square lattice. Ho
ever, for a special combination of the parameters the two
of Boltzmann weights are the same and, consequently,
partition function of the model can be calculated. This lin
where the partition function can be calculated, turns out to
the critical line. Here, in contrast with the three-dimension
Ising model, the two notions of integrability and criticalit
coincide.

We have numerically investigated the case of the thr
state Potts model. Forq53 this model presents a secon
order phase transition which is not of the same universa
class as the transition of the Ising model. For the isotro
case the transition is given by (eK21)25q53. It would
have been interesting to study higher values ofq for which

d
le

e

ver

FIG. 5. The best fittedb parameter as a function ofeK1 for the
anisotropic three-dimensional Ising model. The average runs o
2000 spacings. The pointeK151 corresponds to a two-dimension
model.
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the transition becomes first order, but the size of the tran
matrix is an exponential function of the number of statesq,
and values ofq larger than 3 lead to extremely large matric
even for a small lattice size. The transfer matrixT has the
same form@Eq. ~11!# as for the two-dimensional Ising mode
in absence of magnetic field. The matrixV(K2) is a
3N33N diagonal matrix with entries

@V~K2!# i , j5 )
i50

N21

w2
d~a i ,a i11! , ~19!

wherea i 5 0, 1 or 2 is the value of thei th spins in the spin
configuration labeleda. The matrixH(K1) is a symmetric
matrix

H~K1!5h~K1!
^N, h~K1!5S w1 1 1

1 w1 1

1 1 w1

D .

~20!

The space symmetry group isDN as in the case of the Isin
model, but the color symmetry group isS3 rather thanS2 for
the Ising model. The size reduction is better in the Potts c
but far less than the exponential increase, due to the t
states. Table III gives the size of the blocks in the differe
invariant subspaces. In Fig. 6 we present two typical le
spacing distributions. The upper one~a! is obtained at the
critical value of the Boltzmann weightw*511A3, and the
other one is obtained at a different valuew51.4 far from the
transition. It is obvious that atw* the distribution is very
close to an exponential, while forwÞw* this distribution is
close to the Wigner surmise. Figure 7 shows the rigid
D3 for the same values of the Boltzmann weights. We o
serve the same coincidence with the theoretical behavior
pected for independent numbers and spectra of GOE m
ces. The agreement with the GOE behavior extends up
value L.4. This value is much less than for the tw
dimensional Ising model in a field, but is comparable w
values obtained in some quantum models@14#. In Fig. 8 we
present the behavior of the best fitted valueb of the param-
etrized distribution as a function of temperature. Seve
sizesN5 8, 9, 10, and 11 are plotted. We first note that t

TABLE III. Three-state Potts model: the symmetries of a pe
odic chain combined with theS3 color symmetry. Same notations a
in Table I, butC has three possible valuesC50, 1, or 2. There is an
extra twofold degeneracy forC52.

Three-state Potts model on a periodic square lattice
N511 dim5177 147

R k l l R aR,C50 aR,C51 aR,C52 aR

0 0 1 1 1464 1342 2806 8418
1 p 21 1 1221 1342 2563 7689
2 p/11 * 2 2684 2684 5368 16104
3 2p/11 * 2 2684 2684 5368 16104
4 3p/11 * 2 2684 2684 5368 16104
5 4p/11 * 2 2684 2684 5368 16104
6 5p/11 * 2 2684 2684 5368 16104
er

e,
ee
t
l

y
-
x-
ri-
a

l

spacing distribution has properly ‘‘detected’’ the integrab
point w* , which corresponds precisely to the minimum
theb(w) curve. We also observe size effects: for larger s
the downward peak is sharper than for smaller size. T

-

FIG. 6. Eigenvalue spacing distribution for the three-state P
model~a! precisely at the critical pointw15w2511A3, and~b! far
from the critical point atw15w251.4. The data are obtained fo
N511 and the number of spacings are 2500~a! and 1400~b!.

FIG. 7. The rigidityD3(L) for the same parameters as in Fig.
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suggests that in the thermodynamic limit the spacing dis
bution is a Poisson lawonly at the critical temperature.

We again found that integrability leads to independ
eigenvalues, whereas nonintegrability leads to eigenvalue
pulsion properly described by the spectral statistical prop
ties of the GOE: the analysis of the statistical properties
the spectrum of the transfer matrix can be used to find in
grable points.

E. Three-state Potts model for negative Boltzmann weights

We now look at the isotropic three-state Potts model w
w,0. The transfer matrix is still symmetric, but some e
tries become imaginary, since we have half-integer pow
of negative numbers@see Eqs.~19! and ~11!#. We numeri-
cally found that the spectrum is complex only wh
22,w,0. Thus whenw,22 one can apply the standar
RMT analysis. We have found a GOE spacing distribution
expected. When22,w,0 the spectrum contains most
complex conjugate eigenvalues. By spacing we now m
the shortest Euclidian distance between eigenvalues in
complex plane, and we use another unfolding proced
~Ref. @4#, Chap. 8.6!. We want to know if the unfolded ei
genvalues are ‘‘independent’’ or if they repel each other. T
spacing distribution of independent points ind dimensions is
easy to evaluate: forN points taken randomly on a
d-dimensional hypersphere of radiusN1/d, the probability
that the distance between a point and its closest neighb
s, is the probability that exactly one point is found at t
distance betweens and s1ds, and that the otherN22
points are farther away thans:

PN~s!ds}sd21F12S s

N1/dD dG ~N22!

ds . ~21!

Taking the limitN→`, one obtainsP(s)}sd21exp(2Csd)
(C is some constant!. For d52 one recovers precisely th
Wigner law which is a well known distribution in math
ematical statistics. In other words a Wigner law for a on
dimensional set of points means repulsion between th
points, whereas for points in the plane the same Wigner

FIG. 8. The parameterb as a function of the temperature for
three-state Potts model for different lattice sizes. The minimum i
the critical point which is integrable.
i-
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means independence. The probability that random point
the plane are close to each other is already small, an
supplementary repulsion due to correlations of nonintegra
ity will have less influence than in the case of a real sp
trum. For nonsymmetric random matrices the joint probab
ity distribution of the eigenvalues was studied@23#.
Eigenvalue repulsion is still present, but a closed express
for the degree of repulsion is not known.

In Fig. 9~b! we present a distribution of eigenvalue spa
ings forw521.5: the repulsion is clearly seen, sinceP(s)
near the origin is smaller than for the Wigner law. We no
that this distribution is not close to the eigenvalue spac
distribution of the spectra of another universal ensem
GUE or GSE. We also have investigated another spe
point in the regime22,w,0. The self-duality equation
(wSD21)25q has a solutionwSD512A3 which lies in this
regime. In Fig. 9~a! we present the distribution of eigenva
ues spacings at this valuewSD512A3. The agreement with
the Wigner law, which here means independence, is q
good. This is expected since the pointwSD is also integrable.

IV. DISCUSSION AND CONCLUSION

We showed numerically that the eigenvalues of the tra
fer matrix of an integrable spin model have many features

at

FIG. 9. Two closest-distance distributions for the isotrop
three-state Potts model with negative Boltzmann weight:~a! for the
self-dual Boltzman weightw15w25wSD512A3, and ~b! for a
different valuew15w2521.5. The average runs over about 200
spacings.
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random independent numbers. Conversely, the spectrum
the transfer matrix of a nonintegrable spin model has m
features in common with the spectrum of a GOE matrix.
particular, the spacing distribution is an exponential law
integrable systems, while it is close to the Wigner surm
for nonintegrable systems. Quantities involving more th
two closest eigenvalues, like the rigidity, also show a G
behavior on quite a large scale involving up to 25 eigenv
ues in the case of the square lattice Ising model with fie
The independence of eigenvalues for integrable models
been checked on the Ising model in two dimensions in
absence of a magnetic field, as well as on the critical poin
the three-state Potts model. We also have studied the tra
tion point of a three-dimensional Ising model, for which w
have found eigenvalue repulsion and a good agreemen
the spacing distribution with the Wigner surmise. Th
stresses the difference between criticality and integrabi
the eigenvalue statistics is sensible to integrability and no
criticality.

Using the eigenvalue statistics as a criterion of integ
blity, we support the hypothesis that the two-dimensio
Ising model in a field and the three-dimensional Ising mo
are not integrable. The integrable models appear as very
gular and isolated in parameter space. This is clearly see
curves showing the parameterb as a function of a Boltz-
mann weight, whereb is close to unity almost everywhere
except for the particular values where the model is in
grable. With the sizes numerically tractable, the variation
b is abrupt, and the size behavior suggests that in the t
modynamic limit the statistics changes discontinuously.
clarify this point, a more detailed study of the size effects
needed. It would also be interesting, but difficult, to study
Potts model with a large number of states to have a
order phase transition point which is integrable.

To use the criterion of eigenvalue spacing statistics w
new models~for example, chiral models! one needs to study
complex spectra in many cases. The distinction between
dependent eigenvalues for integrable models and repe
eigenvalues for nonintegrable models still holds. Howeve
repulsion between eigenvalues in one dimension is m
easier to quantify than in two dimensions. Intuitively this c
be understood since in two dimensions the eigenvalues
not restricted to a line and have naturally more space
avoid each other. The repulsion between eigenvalues in
dimensions has less effect than in one dimension. We h
found that for the three-state Potts model and for a Bo
mann weight22,w,0 the spectrum is complex, and th
the eigenvalue spacing distribution is characteristic of eig
value repulsion. However, whenw is close to the negative
self-dual value, we recover a distribution close to the Wig
law indicating here an eigenvalue independence assoc
with integrability. The numerical difficulties arising from
complex spectra are of importance, and we need to re
further the analysis, and especially the unfolding, to stu
convicingly chiral models. This is in progress.

In these two papers we showed numerically that the
tistical properties of transfer matrix spectra of classical s
tistical mechanics models are related to the integrability
the model, extending hereby the field of application of RM
This can be useful in the search for new integrable mod
of
y
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APPENDIX A

It was established in@19# that the spectrum of the row-to
row anisotropic Ising model for an even sizeN is given by

Lt~K1 ,K2!5@2 sinh~2K1!#
N/2expS 2 1

2 (
q50

N21

tqeqD ,
~A1!

wheretq561 according to theqth digit of the binary rep-
resentation oft (0<t,2N), and, for allq with 0<q,N,

cosheq5cosh2K2cosh2K1*2sinh2K2sinh2K1* cosQ ,
~A2!

whereQ5(2q11)p/N if there is an even number of 1 in
the base two representation oft, andQ52qp/N otherwise.
For eq , the positive root of Eq.~A2! has to be taken excep
for Q50, where e052(K1*2K2) and for Q5p where
eN/252(K1*1K2). K1* is the dual coupling constant define

by tanhK15e22K1* . The derivative ofLt(K1 ,K2) with respect
to K2 is

]Lt~K1 ,K2!

]K2
52 1

2 Lt~K1 ,K2! (
q50

N21

tq
]eq
]K2

, ~A3!

with

]eq
]K2

52
sinh2K2cosh2K1*2cosh2K2sinh2K1* cosQ

sinheq
.

~A4!

It is easy to check that, for anevennumber of particles,

eq5eN212q and
]eq
]K2

5
]eN212q

]K2
~0<q,N/2! ,

~A5!

while, for anoddnumber of particles,

eq5eN2q and
]eq
]K2

5
]eN2q

]K2
~1<q,N/2!

~A6!

and

e052~K1*2K2!,
]e0
]K2

52 , ~A7!

eN/252~K1*1K2!,
]eN/2
]K2

522 . ~A8!

When the sizeN is a multiple of 4 and when there ar
N/2 particles, then the number of particles is even, and
must use formula~A5!. There are 2N/2 choices oft such that
tq52tN212q for 0<q,N/2. In that case one has

(
q50

N21

tq
]eq
]K2

5 (
q50

N/221

~tq2tN212q!
]eq
]K2

50 . ~A9!
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This gives 2N/2 K2-independent states.
N being still a multiple of 4 and takingN/261 particles,

we now must use formulas~A6! and ~A7!. There are
232N/221 choices of t such that tq52tN2q for
1<q,N/2 andt05tN/2 . In that case one has

(
q50

N21

tq
]eq
]K2

56~e01eN/2!1 (
q51

N/221

~tq2tN212q!
]eq
]K2

50 .

~A10!
.

cs

cs

l

-

Collecting the three cases mentioned above, we ob
2N/211 K2-independent states. It is then simple to verify th
the corresponding eigenvalues are

2N ~sinhK1!
p~coshK2!

N2p , ~A11!

wherep5N/221, andN/2 orN/211 is the number of par-
ticles.
ys.
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